Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Adv Sci (Weinh) ; 8(23): e2101837, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693660

RESUMO

Neurovascular disorders, which involve the vascular and nervous systems, are common. Research on such disorders usually focuses on either vascular or nervous components, without looking at how they interact. Adopting a neurovascular perspective is essential to improve current treatments. Therefore, comparing molecular processes known to be involved in both systems separately can provide insight into promising areas of future research. Since development and regeneration share many mechanisms, comparing signaling molecules involved in both the developing vascular and nervous systems and shedding light to those that they have in common can reveal processes, which have not yet been studied from a regenerative perspective, yet hold great potential. Hence, this review discusses and compares processes involved in the development of the vascular and nervous systems, in order to provide an overview of the molecular mechanisms, which are most promising with regards to treatment for neurovascular disorders. Vascular endothelial growth factor, semaphorins, and ephrins are found to hold the most potential, while fibroblast growth factor, bone morphogenic protein, slits, and sonic hedgehog are shown to participate in both the developing vascular and nervous systems, yet have not been studied at the neurovascular level, therefore being of special interest for future research.


Assuntos
Artérias/embriologia , Sistema Nervoso/embriologia , Medicina Regenerativa/métodos , Transdução de Sinais , Veias/embriologia , Artérias/metabolismo , Efrinas/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Sistema Nervoso/metabolismo , Semaforinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Veias/metabolismo
2.
Angiogenesis ; 24(2): 345-362, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677657

RESUMO

Vegfc/Vegfr3 signaling is critical for lymphangiogenesis, the sprouting of lymphatic vessels. In zebrafish, cells sprouting from the posterior cardinal vein can either form lymphatic precursor cells or contribute to intersegmental vein formation. Both, the Vegfc-dependent differential induction of Prox1a in sprouting cells as well as a Notch-mediated pre-pattern within intersegmental vessels have been associated with the regulation of secondary sprout behavior. However, how exactly a differential lymphatic versus venous sprout cell behavior is achieved is not fully understood. Here, we characterize a zebrafish mutant in the adaptor protein Grb2b, and demonstrate through genetic interaction studies that Grb2b acts within the Vegfr3 pathway. Mutant embryos exhibit phenotypes that are consistent with reduced Vegfr3 signaling outputs prior to the sprouting of endothelial cells from the vein. During secondary sprouting stages, loss of grb2b leads to defective cell behaviors resulting in a loss of parachordal lymphangioblasts, while only partially affecting the number of intersegmental veins. A second GRB2 zebrafish ortholog, grb2a, contributes to the development of lymphatic structures in the meninges and in the head, but not in the trunk. Our results illustrate an essential role of Grb2b in vivo for cell migration to the horizontal myoseptum and for the correct formation of the lymphatic vasculature, while being less critically required in intersegmental vein formation. Thus, there appear to be higher requirements for Grb2b and therefore Vegfr3 downstream signaling levels in lymphatic versus vein precursor-generating sprouts.


Assuntos
Células Endoteliais/metabolismo , Proteína Adaptadora GRB2/metabolismo , Linfangiogênese , Neovascularização Fisiológica , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proteína Adaptadora GRB2/genética , Vasos Linfáticos/embriologia , Mutação , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Veias/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Nat Commun ; 11(1): 6314, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298956

RESUMO

Blood and lymphatic vessels structurally bear a strong resemblance but never share a lumen, thus maintaining their distinct functions. Although lymphatic vessels initially arise from embryonic veins, the molecular mechanism that maintains separation of these two systems has not been elucidated. Here, we show that genetic deficiency of Folliculin, a tumor suppressor, leads to misconnection of blood and lymphatic vessels in mice and humans. Absence of Folliculin results in the appearance of lymphatic-biased venous endothelial cells caused by ectopic expression of Prox1, a master transcription factor for lymphatic specification. Mechanistically, this phenotype is ascribed to nuclear translocation of the basic helix-loop-helix transcription factor Transcription Factor E3 (TFE3), binding to a regulatory element of Prox1, thereby enhancing its venous expression. Overall, these data demonstrate that Folliculin acts as a gatekeeper that maintains separation of blood and lymphatic vessels by limiting the plasticity of committed endothelial cells.


Assuntos
Plasticidade Celular , Vasos Linfáticos/embriologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Supressoras de Tumor/deficiência , Veias/embriologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Embrião de Mamíferos , Células Endoteliais/metabolismo , Endotélio Linfático/citologia , Endotélio Linfático/embriologia , Endotélio Vascular/citologia , Endotélio Vascular/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Vasos Linfáticos/citologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Veias/citologia
4.
Bioessays ; 41(3): e1800198, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30805984

RESUMO

A tree-like hierarchical branching structure is present in many biological systems, such as the kidney, lung, mammary gland, and blood vessels. Most of these organs form through branching morphogenesis, where outward growth results in smaller and smaller branches. However, the blood vasculature is unique in that it exists as two trees (arterial and venous) connected at their tips. Obtaining this organization might therefore require unique developmental mechanisms. As reviewed here, recent data indicate that arterial trees often form in reverse order. Accordingly, initial arterial endothelial cell differentiation occurs outside of arterial vessels. These pre-artery cells then build trees by following a migratory path from smaller into larger arteries, a process guided by the forces imparted by blood flow. Thus, in comparison to other branched organs, arteries can obtain their structure through inward growth and coalescence. Here, new information on the underlying mechanisms is discussed, and how defects can lead to pathologies, such as hypoplastic arteries and arteriovenous malformations.


Assuntos
Artérias/embriologia , Artérias/crescimento & desenvolvimento , Neovascularização Fisiológica , Veias/embriologia , Veias/crescimento & desenvolvimento , Animais , Diferenciação Celular/fisiologia , Movimento Celular , Plasticidade Celular , Células Epiteliais/fisiologia , Humanos , Camundongos , Morfogênese , Receptores CXCR4/metabolismo , Receptores Notch/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
5.
Nat Commun ; 10(1): 453, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692543

RESUMO

Venous endothelial cells are molecularly and functionally distinct from their arterial counterparts. Although veins are often considered the default endothelial state, genetic manipulations can modulate both acquisition and loss of venous fate, suggesting that venous identity is the result of active transcriptional regulation. However, little is known about this process. Here we show that BMP signalling controls venous identity via the ALK3/BMPR1A receptor and SMAD1/SMAD5. Perturbations to TGF-ß and BMP signalling in mice and zebrafish result in aberrant vein formation and loss of expression of the venous-specific gene Ephb4, with no effect on arterial identity. Analysis of a venous endothelium-specific enhancer for Ephb4 shows enriched binding of SMAD1/5 and a requirement for SMAD binding motifs. Further, our results demonstrate that BMP/SMAD-mediated Ephb4 expression requires the venous-enriched BMP type I receptor ALK3/BMPR1A. Together, our analysis demonstrates a requirement for BMP signalling in the establishment of Ephb4 expression and the venous vasculature.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Proteínas Morfogenéticas Ósseas/genética , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais/genética , Veias/metabolismo , Animais , Animais Geneticamente Modificados , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Células Endoteliais/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Receptor EphB4/genética , Receptor EphB4/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Veias/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
J Vasc Surg ; 69(1): 253-262, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30154011

RESUMO

BACKGROUND: Arteries, veins, and lymphatic vessels are distinguished by structural differences that correspond to their different functions. Each of these vessels is also defined by specific molecular markers that persist throughout adult life; these markers are some of the molecular determinants that control the differentiation of embryonic undifferentiated cells into arteries, veins, or lymphatics. METHODS: This is a review of experimental literature. RESULTS: The Eph-B4 receptor and its ligand, ephrin-B2, are critical molecular determinants of vessel identity, arising on endothelial cells early in embryonic development. Eph-B4 and ephrin-B2 continue to be expressed on adult vessels and mark vessel identity. However, after vascular surgery, vessel identity can change and is marked by altered Eph-B4 and ephrin-B2 expression. Vein grafts show loss of venous identity, with less Eph-B4 expression. Arteriovenous fistulas show gain of dual arterial-venous identity, with both Eph-B4 and ephrin-B2 expression, and manipulation of Eph-B4 improves arteriovenous fistula patency. Patches used to close arteries and veins exhibit context-dependent gain of identity, that is, patches in the arterial environment gain arterial identity, whereas patches in the venous environment gain venous identity; these results show the importance of the host infiltrating cells in determining vascular identity after vascular surgery. CONCLUSIONS: Changes in the vessel's molecular identity after vascular surgery correspond to structural changes that depend on the host's postsurgical environment. Regulation of vascular identity and the underlying molecular mechanisms may allow new therapeutic approaches to improve vascular surgical procedures.


Assuntos
Artérias/metabolismo , Biomarcadores/metabolismo , Vasos Linfáticos/metabolismo , Veias/metabolismo , Animais , Artérias/embriologia , Artérias/cirurgia , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfangiogênese , Vasos Linfáticos/embriologia , Vasos Linfáticos/cirurgia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Receptor EphB4/genética , Receptor EphB4/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Procedimentos Cirúrgicos Vasculares , Veias/embriologia , Veias/cirurgia
7.
J Vasc Surg Venous Lymphat Disord ; 6(4): 523-525, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29773423

RESUMO

Klippel-Trénaunay syndrome is a rare mixed malformation characterized by congenital varicose veins, low-flow venous and lymphatic malformations, hypertrophy of soft tissue and bone, and capillary malformations. A 35-year-old man with a diagnosis of Klippel-Trénaunay syndrome presented to the clinic with significant pain and swelling in the left leg. Initial conservative management with compression therapy failed. He was then managed surgically with preoperative placement of an inferior vena cava filter (because of a history of deep venous thrombosis and pulmonary embolism), followed by resection of the lateral embryonic vein, ligation of large perforators, and excision of smaller varicosities. He is doing well at 18 months of follow-up.


Assuntos
Síndrome de Klippel-Trenaunay-Weber/complicações , Implantação de Prótese/instrumentação , Varizes/cirurgia , Procedimentos Cirúrgicos Vasculares , Veias/cirurgia , Filtros de Veia Cava , Adulto , Humanos , Síndrome de Klippel-Trenaunay-Weber/diagnóstico por imagem , Ligadura , Angiografia por Ressonância Magnética , Masculino , Flebografia/métodos , Resultado do Tratamento , Varizes/diagnóstico por imagem , Varizes/etiologia , Veias/diagnóstico por imagem , Veias/embriologia
8.
Curr Mol Med ; 18(1): 3-14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577856

RESUMO

BACKGROUND: Vascular network formation induced by angiogenesis plays an important role in many physiological and pathological processes. However, the role of blood flow and underlying mechanisms in vascular network formation, for example for the development of the caudal vein plexus (CVP), is poorly understood. OBJECTIVE: The aim of this study was to explore the role of ERK5-klf2a-nos2b signaling in the CVP angiogenesis. METHOD AND RESULTS: In this study on tnnt2a-MO injection and chemical blood flow modulator treatment in zebrafish embryos, we demonstrated that decreased blood flow disrupted CVP formation. The hemodynamic force was quantitatively analyzed. Furthermore, CVP angiogenesis in zebrafish embryos was inhibited by disruption of the blood flow downstream effectors ERK5, klf2a, and nos2b in response to treatment with the ERK5 specific inhibitor and to injection of klf2a-MO, nos2b-MO. Overexpression of klf2a mRNA or nos2b mRNA restored vascular defects in tnnt2a or klf2a morphants. The data suggest that flow-induced ERK5-klf2a-nos2b signaling is involved in CVP angiogenesis in zebrafish embryos. CONCLUSION: We have demonstrated that blood flow is essential for vascular network formation, specifically for CVP angiogenesis in zebrafish. A novel genetic and mechanical mechanism was discovered in which ERK5 facilitates the integration of blood flow with the downstream klf2a-nos2b signaling for CVP angiogenesis.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Veias/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Embrião não Mamífero/embriologia , Fatores de Transcrição Kruppel-Like/genética , Proteína Quinase 7 Ativada por Mitógeno/genética , Óxido Nítrico Sintase Tipo II/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
J Genet Genomics ; 44(10): 483-492, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29037991

RESUMO

Vascular endothelial growth factor A (Vegfa) signaling regulates vascular development during embryogenesis and organ formation. However, the signaling mechanisms that govern the formation of various arteries/veins in various tissues are incompletely understood. In this study, we utilized transcription activator-like effector nuclease (TALEN) to generate zebrafish vegfaa mutants. vegfaa-/- embryos are embryonic lethal, and display a complete loss of the dorsal aorta (DA) and expansion of the cardinal vein. Activation of Vegfa signaling expands the arterial cell population at the expense of venous cells during vasculogenesis of the axial vessels in the trunk. Vegfa signaling regulates endothelial cell (EC) proliferation after arterial-venous specification. Vegfa deficiency and overexpression inhibit the formation of tip cell filopodia and interfere with the pathfinding of intersegmental vessels (ISVs). In the head vasculature, vegfaa‒/‒ causes loss of a pair of mesencephalic veins (MsVs) and central arteries (CtAs), both of which usually develop via sprouting angiogenesis. Our results indicate that Vegfa signaling induces the formation of the DA at the expense of the cardinal vein during the trunk vasculogenesis, and that Vegfa is required for the angiogenic formation of MsVs and CtAs in the brain. These findings suggest that Vegfa signaling governs the formation of diverse arteries/veins by distinct cellular mechanisms in vertebrate vasculatures.


Assuntos
Artérias/embriologia , Neovascularização Fisiológica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Veias/embriologia , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Desenvolvimento Embrionário , Mutação , Pseudópodes/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
10.
Actas Dermosifiliogr ; 108(5): 407-417, 2017 Jun.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28126187

RESUMO

Sturge-Weber syndrome is a sporadic congenital neurocutaneous disorder caused by a somatic activating mutation in GNAQ; it affects 1 in every 20,000 to 50,000 newborns. It is characterized by a facial Port-wine stain, leptomeningeal angiomatosis, and glaucoma. Seizures are the most common neurological manifestation and typically present in the first months of life. Glaucoma may be present at birth or develop later. Neuroimaging studies show leptomeningeal angiomatosis, supporting diagnosis. Standard treatment for Sturge-Weber syndrome includes laser treatment for the Port-wine stain, anticonvulsants, and medical or surgical treatment for the glaucoma. Prognosis depends on the extent of leptomeningeal involvement and the severity of the glaucoma.


Assuntos
Síndrome de Sturge-Weber , Anticonvulsivantes/uso terapêutico , Dano Encefálico Crônico/etiologia , Dano Encefálico Crônico/prevenção & controle , Diagnóstico Precoce , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Glaucoma/tratamento farmacológico , Glaucoma/etiologia , Humanos , Lasers de Corante/uso terapêutico , Meninges/irrigação sanguínea , Meninges/embriologia , Meninges/patologia , Neuroimagem , Mancha Vinho do Porto/etiologia , Mancha Vinho do Porto/cirurgia , Convulsões/tratamento farmacológico , Convulsões/etiologia , Síndrome de Sturge-Weber/diagnóstico , Síndrome de Sturge-Weber/genética , Síndrome de Sturge-Weber/patologia , Síndrome de Sturge-Weber/terapia , Veias/embriologia
11.
Nat Commun ; 8: 13991, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071661

RESUMO

Formation of organ-specific vasculatures requires cross-talk between developing tissue and specialized endothelial cells. Here we show how developing zebrafish spinal cord neurons coordinate vessel growth through balancing of neuron-derived Vegfaa, with neuronal sFlt1 restricting Vegfaa-Kdrl mediated angiogenesis at the neurovascular interface. Neuron-specific loss of flt1 or increased neuronal vegfaa expression promotes angiogenesis and peri-neural tube vascular network formation. Combining loss of neuronal flt1 with gain of vegfaa promotes sprout invasion into the neural tube. On loss of neuronal flt1, ectopic sprouts emanate from veins involving special angiogenic cell behaviours including nuclear positioning and a molecular signature distinct from primary arterial or secondary venous sprouting. Manipulation of arteriovenous identity or Notch signalling established that ectopic sprouting in flt1 mutants requires venous endothelium. Conceptually, our data suggest that spinal cord vascularization proceeds from veins involving two-tiered regulation of neuronal sFlt1 and Vegfaa via a novel sprouting mode.


Assuntos
Neurônios/fisiologia , Medula Espinal/embriologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Veias/embriologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Embrião não Mamífero/citologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Neovascularização Fisiológica , Receptores Notch/genética , Receptores Notch/metabolismo , Medula Espinal/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Veias/metabolismo , Proteínas de Peixe-Zebra/genética
12.
Elife ; 52016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28005008

RESUMO

Mechanisms underlying the vein development remain largely unknown. Tie2 signaling mediates endothelial cell (EC) survival and vascular maturation and its activating mutations are linked to venous malformations. Here we show that vein formation are disrupted in mouse skin and mesentery when Tie2 signals are diminished by targeted deletion of Tek either ubiquitously or specifically in embryonic ECs. Postnatal Tie2 attenuation resulted in the degeneration of newly formed veins followed by the formation of haemangioma-like vascular tufts in retina and venous tortuosity. Mechanistically, Tie2 insufficiency compromised venous EC identity, as indicated by a significant decrease of COUP-TFII protein level, a key regulator in venogenesis. Consistently, angiopoietin-1 stimulation increased COUP-TFII in cultured ECs, while Tie2 knockdown or blockade of Tie2 downstream PI3K/Akt pathway reduced COUP-TFII which could be reverted by the proteasome inhibition. Together, our results imply that Tie2 is essential for venous specification and maintenance via Akt mediated stabilization of COUP-TFII.


Assuntos
Fator II de Transcrição COUP/metabolismo , Células Endoteliais/fisiologia , Receptor TIE-2/metabolismo , Veias/crescimento & desenvolvimento , Animais , Deleção de Genes , Marcação de Genes , Mesentério/anatomia & histologia , Mesentério/embriologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor TIE-2/genética , Retina/anatomia & histologia , Pele/anatomia & histologia , Pele/embriologia , Veias/embriologia
13.
Dev Biol ; 420(1): 67-78, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789228

RESUMO

The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time in-depth cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium.


Assuntos
Vasos Sanguíneos/embriologia , Neovascularização Fisiológica , Pâncreas/irrigação sanguínea , Pâncreas/embriologia , Vertebrados/embriologia , Animais , Artérias/embriologia , Padronização Corporal , Capilares/embriologia , Epitélio/irrigação sanguínea , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imageamento Tridimensional , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular , Veias/embriologia
14.
Arterioscler Thromb Vasc Biol ; 36(6): 1209-19, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27079877

RESUMO

OBJECTIVE: The vascular endothelial growth factor (VEGF) receptor Flk1 is essential for vascular development, but the signaling and transcriptional pathways by which its expression is regulated in endothelial cells remain unclear. Although previous studies have identified 2 Flk1 regulatory enhancers, these are dispensable for Flk1 expression, indicating that additional enhancers contribute to Flk1 regulation in endothelial cells. In the present study, we sought to identify Flk1 enhancers contributing to expression in endothelial cells. APPROACH AND RESULTS: A region of the 10th intron of the Flk1 gene (Flk1in10) was identified as a putative enhancer and tested in mouse and zebrafish transgenic models. This region robustly directed reporter gene expression in arterial endothelial cells. Using a combination of targeted mutagenesis of transcription factor-binding sites and gene silencing of transcription factors, we found that Gata and Ets factors are required for Flk1in10 enhancer activity in all endothelial cells. Furthermore, we showed that activity of the Flk1in10 enhancer is restricted to arteries through repression of gene expression in venous endothelial cells by the Notch pathway transcriptional regulator Rbpj. CONCLUSIONS: This study demonstrates a novel mechanism of arterial-venous identity acquisition, indicates a direct link between the Notch and VEGF signaling pathways, and illustrates how cis-regulatory diversity permits differential expression outcomes from a limited repertoire of transcriptional regulators.


Assuntos
Artérias/metabolismo , Células Endoteliais/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Neovascularização Fisiológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Veias/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Artérias/embriologia , Sítios de Ligação , Elementos Facilitadores Genéticos , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Genes Reporter , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Íntrons , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Mutação , Proteínas Proto-Oncogênicas c-ets/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição SOX/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Veias/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Dev Biol ; 409(1): 114-128, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26477558

RESUMO

Despite considerable interest in angiogenesis, organ-specific angiogenesis remains less well characterized. The vessels that absorb nutrients from the yolk and later provide blood supply to the developing digestive system are primarily venous in origin. In zebrafish, these are the vessels of the Sub-intestinal venous plexus (SIVP) and they represent a new candidate model to gain an insight into the mechanisms of venous angiogenesis. Unlike other vessel beds in zebrafish, the SIVP is not stereotypically patterned and lacks obvious sources of patterning information. However, by examining the area of vessel coverage, number of compartments, proliferation and migration speed we have identified common developmental steps in SIVP formation. We applied our analysis of SIVP development to obd mutants that have a mutation in the guidance receptor PlexinD1. obd mutants show dysregulation of nearly all parameters of SIVP formation. We show that the SIVP responds to a unique combination of pathways that control both arterial and venous growth in other systems. Blocking Shh, Notch and Pdgf signaling has no effect on SIVP growth. However Vegf promotes sprouting of the predominantly venous plexus and Bmp promotes outgrowth of the structure. We propose that the SIVP is a unique model to understand novel mechanisms utilized in organ-specific angiogenesis.


Assuntos
Padronização Corporal , Intestinos/irrigação sanguínea , Veias/anatomia & histologia , Veias/embriologia , Peixe-Zebra/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Movimento Celular , Proliferação de Células , Embrião não Mamífero/anatomia & histologia , Camundongos , Mutação/genética , Neovascularização Fisiológica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ducto Vitelino/anatomia & histologia , Ducto Vitelino/embriologia , Proteínas de Peixe-Zebra/metabolismo
16.
Clin Anat ; 28(1): 75-87, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24677178

RESUMO

Venous drainage of the spine and spinal cord is accomplished through a complex network of venous structures compartmentalized to intrinsic, extrinsic, and extradural systems. As the literature on this topic is scarce, the following review was performed to summarize the available literature into a single coherent format. The medical literature on the spinal venous system was reviewed using online sources as well as historical documents that were not available online in regard to history, embryology, anatomy, and physiology with a particular emphasis on the pathology affecting this system. The spinal venous system is complex and variable. Proper understanding of all aspects is critical for the management of the pathology that results from its failure.


Assuntos
Fístula Arteriovenosa/diagnóstico por imagem , Malformações Arteriovenosas/diagnóstico por imagem , Medula Espinal/irrigação sanguínea , Neoplasias da Coluna Vertebral/secundário , Coluna Vertebral/irrigação sanguínea , Fístula Arteriovenosa/fisiopatologia , Hemodinâmica , Humanos , Infecções/complicações , Imageamento por Ressonância Magnética , Radiografia , Traumatismos da Medula Espinal/complicações , Veias/anatomia & histologia , Veias/embriologia , Veias/patologia , Veias/fisiologia
17.
Surg Radiol Anat ; 37(3): 231-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25047542

RESUMO

OBJECTIVE: The aim of the present study was to show the feasibility and describe the first results of a 3D reconstruction of the venous network of the lower limbs in human fetus using the computer-assisted anatomical dissection (CAAD) technique. MATERIALS AND METHODS: We used limbs from two human fetuses, respectively, 14 and 15 weeks gestation old. Specimens were fixed in 10% formalin, embedded in paraffin wax and serially sectioned at 10 m. The histological slices were stained using HES and Masson Trichrome for soft tissues identification. Immunolabeling techniques using the Protein S-100 marker and the D2-40 marker were used to identify nerves and vessels, respectively. Stained slices were aligned manually, labeled and digitalized. The segmentation of all anatomical structures was achieved using the WinSurf(®) software after manual drawing. RESULTS: A 3D interactive vectorial model of the whole leg, including skin, bone, muscles, arteries, veins, and nerves was obtained. In all limbs, we observed the presence of a big axial vein traveling along the sciatic nerve. In addition, the femoral vein appeared as a small plexus. Although this is a common anatomical feature at the end of organogenesis, this feature is observed in only 9% of adults. Usually interpreted as an "anatomical variation of the femoral vein" it should be considered as a light truncular malformation. These observations bring further support to our proposed "angio-guiding nerves" hypothesis. CONCLUSION: This preliminary study shows that the CAAD technique provided an accurate 3D reconstruction of the fetal leg veins anatomy. It should bring a new insight for the understanding of the different steps of development of the human venous system.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Extremidade Inferior/anatomia & histologia , Extremidade Inferior/irrigação sanguínea , Veias/anatomia & histologia , Cadáver , Dissecação/métodos , Veia Femoral/anatomia & histologia , Veia Femoral/diagnóstico por imagem , Veia Femoral/embriologia , Feto , Humanos , Extremidade Inferior/diagnóstico por imagem , Flebografia/métodos , Veia Safena/anatomia & histologia , Veia Safena/diagnóstico por imagem , Veia Safena/embriologia , Cirurgia Assistida por Computador/métodos , Veias/embriologia
18.
Arterioscler Thromb Vasc Biol ; 34(9): 1838-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25060789

RESUMO

Endothelial cells are a highly diverse group of cells which display distinct cellular responses to exogenous stimuli. Although the aptly named vascular endothelial growth factor-A signaling pathway is hailed as the most important signaling input for endothelial cells, additional factors also participate in regulating diverse aspects of endothelial behaviors and functions. Given this heterogeneity, these additional factors seem to play a critical role in creating a custom-tailored environment to regulate behaviors and functions of distinct subgroups of endothelial cells. For instance, molecular cues that modulate morphogenesis of arterial vascular beds can be distinct from those that govern morphogenesis of venous vascular beds. Recently, we have found that bone morphogenetic protein signaling selectively promotes angiogenesis from venous vascular beds without eliciting similar responses from arterial vascular beds in zebrafish, indicating that bone morphogenetic protein signaling functions as a context-dependent regulator during vascular morphogenesis. In this review, we will provide an overview of the molecular mechanisms that underlie proangiogenic effects of bone morphogenetic protein signaling on venous vascular beds in the context of endothelial heterogeneity and suggest a more comprehensive picture of the molecular mechanisms of vascular morphogenesis during development.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Veias/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Receptores de Proteínas Morfogenéticas Ósseas/fisiologia , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Especificidade de Órgãos , Receptores Notch/fisiologia , Proteínas Smad/fisiologia , Especificidade da Espécie , Fator A de Crescimento do Endotélio Vascular/fisiologia , Peixe-Zebra/embriologia
19.
Angiogenesis ; 17(1): 77-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23959107

RESUMO

Arterial and venous specification is critical for establishing and maintaining a functioning vascular system, and defects in key arteriovenous signaling pathways including VEGF (vascular endothelial growth factor) lead to congenital arteriopathies. The activities of VEGF, are in part controlled by heparan sulfate (HS) proteoglycans, significant components of the endothelial glycocalyx. The level of 6-O sulfation on HS polysaccharide chains, that mediate the interaction between HS and VEGFA, is edited at the cell surface by the enzyme SULF1. We investigated the role of sulf1 in vascular development. In zebrafish sulf1 is expressed in the head and tail vasculature, corresponding spatially and temporally with vascular development. Targeted knockdown of sulf1 by antisense morpholinos resulted in severe vascular patterning and maturation defects. 93 % of sulf1 morphants show dysmorphogenesis in arterial development leading to occlusion of the distal aorta and lack of axial and cranial circulation. Co-injection of vegfa165 mRNA rescued circulatory defects. While the genes affecting haematopoiesis are unchanged, expression of several arterial markers downstream of VegfA signalling such as notch and ephrinB2 are severely reduced in the dorsal aorta, with a concomitant increase in expression of the venous markers flt4 in the dorsal aorta of the morphants. Furthermore, in vitro, lack of SULF1 expression downregulates VEGFA-mediated arterial marker expression, confirming that Sulf1 mediates arterial specification by regulating VegfA165 activity. This study provides the first in vivo evidence for the integral role of the endothelial glycocalyx in specifying arterial-venous identity, vascular patterning and arterial integrity, and will help to better understand congenital arteriopathies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Sulfatases/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Animais , Artérias/embriologia , Artérias/metabolismo , Efrina-B2/imunologia , Efrina-B2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicocálix/genética , Glicocálix/metabolismo , Morfolinos/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfatases/antagonistas & inibidores , Sulfatases/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Veias/embriologia , Veias/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
20.
J Pediatr Surg ; 48(8): e1-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23932633

RESUMO

Umbilical vein varix is a well-described prenatal anomaly in which the prognosis remains unclear. We describe a very rare venous malformation that mimicked an umbilical vein varix consisting of a persistent vitelline vein. From 2003 to 2010, three patients were referred starting at 20 weeks gestation to our prenatal centers for an umbilical vein varix diagnosis. Fetal follow up was unremarkable, with the exception of the dilated vein size (mean: 35 mm at 33 weeks gestation). After birth, the three children presented with thrombosis from the aneurysmal sac to the portal trunk. All the children underwent surgical thrombectomy and resection of the aneurysmal sac after birth. Operative findings showed no umbilical vein but an abnormal dilated and thrombosed vein coming from the umbilicus to the portal vein following the right vitelline vein trajectory. One child was treated with systemic heparin. Median follow up is 5.6 years. Currently, one patient has a normal portal flow. The other two have persistent portal vein thrombosis with portal cavernoma and portal hypertension. This malformation is rare and should be considered in cases of early diagnosed umbilical vein varix whose diameter is greater than 20mm. We advocate an early surgical thrombectomy with heparinization to prevent portal vein thrombosis.


Assuntos
Aneurisma/cirurgia , Doenças do Prematuro/cirurgia , Trombose/congênito , Varizes/cirurgia , Saco Vitelino/irrigação sanguínea , Anormalidades Múltiplas , Anemia/etiologia , Aneurisma/diagnóstico , Aneurisma/embriologia , Anticoagulantes/uso terapêutico , Feminino , Comunicação Interventricular , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Heparina/uso terapêutico , Humanos , Hipertensão Portal/diagnóstico , Hipertensão Portal/etiologia , Recém-Nascido de Baixo Peso , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/diagnóstico , Doenças do Prematuro/embriologia , Masculino , Veia Porta/anormalidades , Gravidez , Trombectomia , Trombocitopenia/etiologia , Trombose/cirurgia , Varizes/diagnóstico , Varizes/embriologia , Veias/anormalidades , Veias/embriologia , Veias/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA